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Abstract

This paper deals with natural convection driven by combined thermal and solutal buoyancy forces in a binary fluid.

The configuration under study is a confined enclosure partially filled with a vertical porous layer. The mathematical

description of the problem is based on a one-domain formulation of the conservation equations. The set of numerical

results presented here quantitatively shows the influence of the porous layer on the flow structure and on heat and spe-

cies transfer in the enclosure.

The paper is focused on the analysis of the influence of the characteristic parameters governing double diffusive con-

vection, namely the ratios of solutal and thermal parameters: the diffusivities and the buoyancy forces. Heat and mass

transfer is analyzed as a function of the permeability of the porous layer. It is shown that the coupling of the flow pen-

etration in the porous layer with the combined buoyancy forces induces a specific behavior of the flow structure and

average heat transfer in the enclosure.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat and solute transport by convection in fluid or

porous domains is relevant to a wide range of industrial

processes or environmental situations. Among these the

analysis of heat or mass transfer due to natural convec-

tion has been the subject of a very intense research activ-

ity over the past decades, and documented reviews are

available to the interested reader [1,2].

The present paper deals with a particular subclass of

such problems where natural convection takes place in a
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confined enclosure partially filled with a porous med-

ium. Heat transfer and fluid flow through fibrous insula-

tion [3], natural convection heat and mass transfer in

solidification [4], or solute exchange in sediments in

coastal environments [5] are some examples of the fields

where transport phenomena take place at an interface

between a fluid phase and a porous medium. The con-

text of the present study aims at a better understanding

of convective heat and solute transfer in the mushy zone

of a solidifying multi-component system, where natural

convection is known to be driven by combined thermal

and solutal buoyancy forces in a binary fluid. This par-

ticular class of convection is termed thermosolutal or

double diffusive convection. In the following paper we

refer to a very simple model in the absence of phase

change where the dendritic region is represented as an

homogeneous porous medium.
ed.
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Nomenclature

A aspect ratio, H/L

C solute mass fraction, wt%

D mass diffusivity of the solute, m2/s

Da Darcy number, K/H2

g acceleration of gravity, m/s2

H height of the enclosure, m
~k unit vector (vertical direction)

k thermal conductivity, W/(mÆK)

K permeability (m2)

L width of the enclosure, m

Le Lewis number: a/D
N buoyancy ratio: bCDC/bTDT
Nu average Nusselt number:

R 1

0
�ðoh=oxÞdz

P dimensionless pressure

Pr Prandtl number, m/a
RaS solutal Rayleigh number, NLeRaT
RaT thermal Rayleigh number, gbTDT H3/am
Sh average Sherwood number:

R 1

0
�ðo/=oxÞdz

T dimensional temperature, K
~V dimensionless fluid velocity (~v�H=a)
w (u) vertical (horizontal) component of ~V
x�P dimensional width of the porous layer, m

xP dimensionless width of the porous layer,

(x�P=L)

x(z) dimensionless coordinates, x*/H(z*/H)

Greek symbols

a thermal diffusivity, m2/s

bT thermal expansion coefficient: �1/q0(oq/oT)
bC solutal expansion coefficient: �1/q0(oq/oC)
DC concentration difference

DT temperature difference

e porosity of the porous layer

l dynamic viscosity of the fluid, kgÆm/s

m kinematic viscosity, m2/s

/ dimensionless concentration, / = (C � C0)/

DC
w stream function: u = �ow/oz; w = ow/ox
q fluid density

h dimensionless temperature, h = (T � T0)/DT

Subscripts

eff effective property of the porous layer

F refers to the fluid domain

P refers to the porous medium

S or C solutal parameter

T thermal parameter
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A complete overview of double diffusive convection

in fluid or porous layers is not within the scope of the

present introduction, and we will only briefly recall the

main studies on convection in composite cavities where

the fluid domain is partially occupied by a porous layer.

It should first be noticed that very few experimental

papers are available on the topic [6–8], and that the main

effort has been to address the numerical simulation of

such flows. The mathematical description of the conser-

vation laws at a fluid–porous interface has been the topic

of many studies after the first approach presented by Bea-

vers and Joseph [6], and the problem of using one- or two-

domain formulations for the conservation equations has

been extensively discussed in the literature (see [9]).

The problem of thermal convection for such a config-

uration in a vertical enclosure where the porous layer is

parallel to the vertical walls has been previously studied

in the context of wall insulation [10,11,3] or solidifica-

tion [12,4,13]. An exact solution has been proposed by

[14] and the stability problem has been tackled by [15].

Numerical results for a vertical enclosure with two por-

ous layers have been presented by Merrikh and Moha-

mad [16]. In all these studies the one-domain

formulation has been used.

Another class of studies considers superimposed hor-

izontal layers, generally a fluid on top of a porous layer.
Here the main interest is to compare the stability results

with the well-known critical Rayleigh numbers for Ray-

leigh–Bénard convection in fluid or porous layers

[17,7,18]. This analysis has been then extended to the

double diffusive problem, using first a two-domain for-

mulation [19,20] and more recently a one-domain ap-

proach [21].

The present paper focuses on the simulation of dou-

ble diffusive convective flows in a binary fluid, confined

in a vertical enclosure, divided into two vertical layers,

one porous and the other fluid. The first analysis in this

field has been proposed by Gobin et al. [22], where the

influence of the Darcy number of the porous layer on

heat and mass transfer has been analyzed, especially in

the range of very small permeabilities for different Ray-

leigh numbers. The study was focused on the case of

aqueous solutions (Pr = 10; Le = 100) as a binary fluid.

Following this first approach, several studies have

concerned a similar situation with two porous layers,

one along each vertical wall, a configuration supposed

to refer to thermal insulation inside buildings [23,24].

In these studies, the fluid under consideration is a mix-

ture of air with another gaseous component(Pr � 0.7)

and thus the Lewis number has the usual order of mag-

nitude for gases: Le � O(1). Considering this range of

parameters (Le < 10) considerably limits the relevance
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of the analysis since, as will be shown hereafter, the

characteristics of the flow are barely different from the

purely thermal case. Indeed it has been extensively

shown in the literature that thermosolutal convective

flows in fully fluid or porous cavities may exhibit

multi-cellular flow structures and complex heat and

solute transfer interaction characteristics due to the large

difference between heat and species diffusivities, that is,

high Lewis numbers.

The scope of the present study is to extend the para-

metric approach previously initiated by Gobin et al. [22]

and to analyze the influence of the main double diffusive

parameters, namely the Lewis number and the relative

strength of the thermal and solutal buoyancy forces.

The paper first present the mathematical model and

the resolution technique in Section 2, then the character-

istics of the porous layer are studied in Section 3 through

a reference case and the influence of the geometry of the

system. Finally the influence of the double diffusive

parameters is presented in the last section.
2. Problem formulation

The geometry under consideration is the two-dimen-

sional rectangular cavity (height H, total width L)

sketched in Fig. 1, where the porous layer (thickness

x�P) along the left wall is assumed to be homogeneous
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Fig. 1. Schematic description of the problem.
and isotropic. The porous medium is saturated by the

binary fluid which fills the remaining of the enclosure.

Different uniform temperatures and concentrations are

specified at the external vertical walls of the cavity,

and zero heat and species fluxes are assumed at the hor-

izontal boundaries. The flow is assumed to be laminar

and incompressible, and the binary fluid to be Newto-

nian and to satisfy the linear Boussinesq approximation

q ¼ q0½1� bT ðT � T 0Þ � bCðC � C0Þ� ð1Þ

Moreover the porous matrix is supposed to be in ther-

mal equilibrium with the fluid, and the Soret and

Dufour effects are neglected.

The mathematical model results from the coupled

system of conservation equations in the fluid and in

the porous region, with the appropriate boundary condi-

tions at the fluid/porous interface. Concerning momen-

tum conservation, the problem of continuity between a

fluid and a porous medium has been intensively studied

over the last thirty years and a discussion of the different

models may be found in Goyeau et al. [9]. In the present

paper, we choose a one-domain approach, which consid-

ers the porous layer as a pseudo-fluid and the composite

region as a continuum. This leads to solve only one

momentum equation, a modified version of the

Navier–Stokes equation which includes a Darcy term,

and eventually a Forchheimer term. The adequate

expression of the momentum equation, for the fluid or

for the porous medium, is retained through the corre-

sponding value of the permeability [10]. This formula-

tion has been widely used in previous numerical

computations, inclusively by the present authors, since

it does not require any explicit boundary condition at

the fluid/porous interface. The validity of this approach

has been assessed by Goyeau et al. [9] for the Poiseuille

flow in a partially porous channel, in the configuration

studied by Beavers and Joseph [6]. A systematical com-

parison with a two-domain approach has not been at-

tempted by the authors, but the comparison presented

by Zhao and Chen [21] in the context of a stability anal-

ysis shows that both formulations lead to similar results.

Under the foregoing hypotheses, the macroscopic

conservation equations both retain the Darcy–Brinkman

formulation in the porous layer and the Navier–Stokes

equation in the binary fluid, the expression of the perme-

ability being a prescribed function of space. In terms of

the dimensionless variables defined in the nomenclature,

the steady-state macroscopic conservation equations

resulting from the present model are written

~r:~V ¼ 0 ð2Þ

1

e2Pr
ð~V 
 ~rÞ~V ¼ �

~rP
Pr

þ RaTðh þ N/Þ~k � 1

Da
~V

þ leff

l
r2~V ð3Þ
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~V 
 ~rh ¼ keff
k

r2h ð4Þ

~V 
 ~r/ ¼ 1

Le
Deff

D
r2/ ð5Þ
At the boundaries, zero heat or species flux conditions are

prescribed at the horizontal walls andDirichlet boundary

conditions at the vertical walls: h = / = �0.5 at the por-

ous medium external wall (x = 0) and h = /= 0.5 at

the vertical wall in contact with the fluid (x = 1/A).

The problem is characterized by the set of dimension-

less parameters generally defined for double diffusive

convection in fluids, plus the parameters characterizing

porous media:

1. The thermal Rayleigh number defined with the fluid

properties, RaT,

2. The buoyancy ratio N,

3. The Prandtl and Lewis numbers of the fluid, Pr and

Le,

4. The Darcy number (dimensionless permeability) of

the porous layer, Da,

5. Geometrical parameters, the aspect ratio of the

enclosure A, and the reduced thickness of the porous

layer, xP.

l, k and D refer to the fluid viscosity, thermal conductiv-

ity and molecular diffusivity, respectively, while sub-

script �eff� refers to the corresponding effective property

of the porous medium. The Nusselt and Sherwood num-

bers are the dimensionless average heat and mass fluxes

along the vertical walls. All definitions are given in the

nomenclature.

The set of Eqs. (2)–(5) is numerically solved using a

standard finite volume procedure. The detailed descrip-

tion of the method may be found elsewhere and only

specific features of the method are recalled hereafter.

The method has been successfully used by the authors

to solve heat and fluid flow problems in fluids and por-

ous media in similar ranges of parameters. It has been

first verified that thermal and thermosolutal natural con-

vection results for xP ! 1 at any value of the Da number

were in agreement with the standard Darcy–Brinkman

version of the code [25]. It has also been assessed that,

at high values of the Darcy number (1 and more), the re-

sults at any value of xP were identical to the results ob-

tained for the pure fluid problem [26]. The calculations

for thermal convection in fluid/porous cavities have been

successfully compared against the existing results [3].

Depending on the permeability of the fluid layer, the

strong temperature, concentration or velocity gradients

may be located along the vertical walls or in the vicinity

of the fluid–porous interface. Consequently, for low and

intermediate permeabilities, compound meshes are nec-

essary in order to solve the interfacial zone and limit
the computational cost: two distinct irregular (generally

sinusoidal) horizontal grids are taken in the porous

layer and in the fluid cavity. The number of nodes in

each domain depends on the Rayleigh numbers and on

the relative thickness of the porous region. For higher

Darcy numbers (typically Da > 10�3) a single sinusoi-

dal distribution of nodes may be used in the horizon-

tal direction. Typical numbers of nodes for the

horizontal direction range between 145 and 252. In the

vertical direction the spatial distribution is generally reg-

ular, usually from 202 up to 402 nodes for describing

multi-cellular structures.
3. Role of the porous layer characteristics

Our purpose is to characterize the main features of

double diffusive convection in a partially porous enclo-

sure. The configuration under study leads to seven gov-

erning parameters if one excludes the ratios of the

effective properties and it is not within reach to explore

combinations of all the dimensionless numbers. We thus

restrict our analysis to a selected range of parameters

which we believe is relevant to understand the underly-

ing mechanisms. First we will mainly refer here to the

case of aqueous solutions which have been often used

in the experimental approach of double diffusion, and

also as an archetypal binary system for solidification

experiments. As a consequence the Prandtl number of

the binary fluid is fixed (Pr = 10) and the corresponding

Lewis number is imposed at a value of 102, except when

the influence of the Lewis number on the flow character-

istics is studied. Also the aspect ratio of the cavity is

fixed (A = H/L = 2). Moreover only the case of cooper-

ating thermosolutal convection is considered (the ther-

mal and solutal body forces are acting in the same

direction). It is well-known that double diffusive flows

in vertical fluid enclosures with Dirichlet temperature

and composition conditions at the active walls may give

rise to multi-cellular ‘‘thermosolutal’’ structures under

given conditions [27], namely a high Lewis number, a

sufficiently high thermal Rayleigh number (boundary

layer regime) and a dominating solutal buoyancy force

with a ‘‘moderate’’ buoyancy ratio N. Thus the typical

reference situation is defined as: Pr = 10, A = 2,

Le = 100, RaT = 106 and N = 10.

In a first stage of this study [22], we had focused our

attention on the influence of the permeability of the por-

ous layer at different thermal Rayleigh numbers, for

given Prandtl and Lewis numbers, the geometry of the

layer/enclosure system and the buoyancy ratio being

kept fixed. The numerical results had shown that the

heat transfer dependance on the Darcy number is char-

acterized by a non-intuitive behavior where the Nusselt

number undergoes a minimum with increasing

permeability. The strong modification of the flow struc-
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ture when the flow penetrates the porous medium is

attributed to the thermosolutal feature of the process.

The scope of the present analysis is to focus more closely

on this aspect, and we aim at characterizing the role of

the buoyancy ratio and of the Lewis number on a wide

range of variation for the permeability of the porous

layer through the Darcy number.

It might be worth of interest to analyze the role of

the effective transport properties appearing in the coef-

ficients of the diffusion terms in (3)–(5). This would be

justified if we were willing to account for the detailed

description of a specific porous structure, including the

porous matrix tortuosity and dispersion phenomena or

permeability anisotropy, or even evolving heterogene-

ities. At this stage of our work, this is not within

the scope of the present report. This is why the ratios

of the effective transport coefficients to the fluid

properties are taken equal to 1 in the scalar conserva-

tion equations and the effective viscosity in the Brink-

man term is also taken equal to the fluid viscosity

leff = l.
The results are mainly presented in terms of the aver-

age dimensionless mass (or heat) flux at vertical walls,

the Sherwood (or Nusselt) number. Let us underline

that, due to the reference length which is used to

define the dimensionless variables, the mass flux (respec-

tively, the heat flux) is defined with respect to DDC=H
(respectively, kDT/H), so that the Sherwood number

(respectively, Nusselt number) for pure diffusion (pure

conduction) is H/L = A (here, 2 in all our calculations).

Two limiting cases may be considered: the limit

Da! 1 (in practice, Da = 1) which corresponds to a

fully fluid cavity, and the limit xP = 1, corresponding

to a completely porous cavity, with different permeabil-

ities, according to the Darcy number. In both cases, the

results have been carefully checked, and the Sherwood

number correlations previously assessed for fluid [27]

or porous [25] domains are recovered.

3.1. Influence of the layer thickness

It has been previously assessed [22] that the thickness

of the porous layer has a significant influence on heat

and mass transfer in the enclosure, even for small values

of xP. This can be seen here from the results displayed in

Fig. 2 showing the variation of the Sherwood number

for a given permeability of the porous domain

(Da = 10�5).

This influence is seen to be limited in this case to

xP < 0.1, since for thicker porous layers (between 0.20

and 0.9) the Sherwood number is not very sensitive to

xP. For xP ! 1, however, a slight decrease of Sh may

be noted on the curve. This effect has also been observed

on the Nu results proposed by [11]. It shows that the

mass (heat) transfer is enhanced in the presence of an

even very thin fluid layer along the wall. This is one of
the interpretations of the Brinkman no slip effect at

the wall [28].

If we display the variation of the average mass trans-

fer as a function of the Darcy number for different val-

ues of the porous layer thickness, several observations

may be done (Fig. 3a). It may be first observed that

when the permeability of the porous layer increases from

very low values (Da � 10�9) to high values correspond-

ing to a fluid (Da � 1), the Sherwood number is contin-

uously increasing. A second feature is that, compared to

the pure fluid cavity (xP = 0, here represented by the re-

sult at Da = 1), the influence of the porous layer thick-

ness on the mass transfer decrease is essentially visible

in the low permeability range (Da < 10�7). In this range

the comments made on Fig. 2 apply for different values

of the Darcy number. At higher permeabilities, the pres-

ence of the porous layer induces a drastic decrease of the

Sherwood number even for a small thickness (xP = 0.1)

of the porous layer, but there is almost no sensitivity

to xP.

If we now consider the evolution of the average heat

transfer with the same variations of Da and xP (Fig. 3b),

the first observation is that this evolution is no longer

monotonous. This feature will be examined in the forth-

coming section. The second observation is the strong

sensitivity of the heat transfer characteristics to the por-

ous layer thickness at all permeabilities in the [0.1–0.8]

range. Simulations performed for thick porous layers

(xP P 0.8, not shown) indicate that the average Nusselt

number remains very close to the pure conduction limit

(Nu = A = 2) over a wide range of Darcy numbers,

emphasizing the absence of convective heat transfer in

this range. This shows that the effect of the porous layer

thickness on the boundary layers is not the same for spe-

cies distribution and for the thermal field: we will show
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that this is due to the difference in diffusion lengths for h
and / and thus to the Lewis number.

3.2. Reference case

In this section the analysis of the results is presented

for the standard reference configuration defined above

(RaT = 106, N = 10, Pr = 10, Le = 100, A = 2) and

xP = 0.1. The results displayed in Fig. 3a at xP = 0.1

show the Sherwood number variation with the perme-

ability of the porous layer (the Darcy number). As com-

mented above the overall evolution is easily explained

and confirms the observations made for heat transfer

in similar situations in the case of pure thermal convec-

tion. In the low permeability range (Da < 10�7), the por-

ous layer behaves like a solid wall, where the diffusive

decrease of temperature and concentration in the layer

results in a significantly less active convection compared

with the fluid case (xP = 0). Then with increasing perme-

ability, the flow penetrates the porous domain and the
corresponding mass transfer monotonously increases,

and finally for very high permeabilities (Da > 10�3),

the friction in the porous layer becomes negligible and

the Sherwood number gets to a constant value, corre-

sponding to the solution obtained for a fully fluid cavity.

If we turn our attention to the variation of the aver-

age heat transfer with permeability for xP = 0.1 (Fig. 4),

we observe that the variation of Nu is essentially differ-

ent. The Nusselt number does not increase monoto-

nously with increasing permeability, but it exhibits two

minima. Although less apparent, these minima still exist

at lower values of RaT (not shown). This new feature,

compared to the results presented by Gobin et al. [22]

where only the main minimum had been identified, will

help us to refine the analysis of the phenomenon. The

evolution of the convective flow with increasing perme-

ability results from the competition between two oppos-

ing effects. First, the higher permeability results in a

better penetration of the porous layer by the flow and

consequently in a smaller diffusive damping of the im-

posed temperature and concentration difference in the

layer. The effective temperature and composition gradi-

ents governing the buoyancy forces are then expected to

grow and the flow to be accelerated, resulting in higher

heat and mass transfer. This is what may be observed

on the Sherwood number. On the other hand, due to

the difference between the diffusivities, the central recir-

culation loop driven on the scale of the thermal bound-

ary layer thickness is driven by a relatively smaller

temperature difference. Locally the thermal buoyancy

force decreases, and the intensity of the internal thermal

loop is decreasing, and so does the average heat transfer.

The double diffusive process is thus dominating the evo-

lution and the foregoing analysis is intended to refine

the interpretation of this behavior in terms of the
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thermosolutal features of the solution. First, when dis-

playing the streamlines at different values of the Darcy

number, it is clearly seen (Figs. 5 and 6) that the exis-

tence of a minimum is directly related to the flow struc-

ture. In the neighborhood of the first minimum (Fig. 5),

one may observe that the decrease in the Nusselt number

is caused by a decrease of the main recirculation cell, due

to the formation of a low velocity zone in the bottom

part of the enclosure where the heat transfer is mainly

conductive. This ‘‘stagnant’’ zone is compositionally

stratified (see Fig. 7) as in typical double diffusive prob-

lems [26], while the heat transfer in this region is mainly

conductive. With the increasing height of the stagnant

zone, the local vertical concentration gradient decreases

and gets destabilized by the lateral temperature gradient,

resulting in the formation of a secondary co-rotative cell

and a sudden increase of the Nusselt number (Fig. 5).

Then the formation process of a stagnant zone at the

bottom of the enclosure resumes at Da � 2 · 10�7 with

the related decrease in heat transfer, until the develop-

ment of a third recirculation cell allows for a new

enhancement of the average heat transfer (Fig. 6). Then,
the increase in Darcy number results in the penetration

of the porous layer by the flow, until, at very high per-

meabilities a fully centro-symmetrical multi-cellular

structure characteristic of double diffusion in liquids is

recovered.

The evolution of the process is well illustrated in Fig.

8 where the maximum of the stream function in each cell

is displayed. One can see that the decrease of the flow in

the initial recirculation cell is continuous up to Da on

the order of 3 · 10�5. The corresponding decrease

of the heat transfer is stopped by the formation of a sec-

ond cell due to the destabilization of the stagnant zone.

The sharp minimum observed in the Nusselt number

curve is due to the fact that immediately after its sudden

formation the second cell is very active, with a value of

wmax almost as high as the first cell. Then the intensity of

this new cell decreases as a new stagnant zone is formed

at the bottom. The third cell on the contrary appears

very progressively and the heat transfer increase at these

Darcy numbers seems to be related to the progressive

penetration of the porous layer by the flow. The increase

occurs around Da = 10�5 far beyond the destabilization
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N = 10, xP = 0.1, Le = 100, Pr = 10, A = 2).
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Fig. 7. Flow, temperature and composition fields at Da = 10�7

(RaT = 106, N = 10,xP = 0.1, Le = 100, Pr = 10, A = 2).
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of the stagnant zone which occurs at Da = 3 · 10�6

(Figs. 6 and 8). The third cell then continuously in-

creases in size and intensity to reach the level of the first

cell at high Da values (�10�2) when the cavity is practi-

cally fluid and the flow structure is symmetrical with re-

spect to the center of the cavity.
4. Influence of double diffusive parameters

The previous analysis has shown that the leading

mechanism in the variations in heat transfer clearly
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Fig. 9. Mass (a) and heat (b) transfer variation with perme-

ability for different Lewis numbers (RaT = 106; N = 10;

Pr = 10; = 2; xP = 0.1).
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has a double diffusive origin. The purpose of the forth-

coming section is to support this analysis with comple-

mentary simulation results where the influence of the

main parameters of thermosolutal convection is investi-

gated, namely the Lewis number Le and the buoyancy

ratio N.

4.1. Influence of the Lewis number

As already mentioned the specific features of double

diffusive convection appear when the characteristic diffu-

sion lengths for heat and solute are significantly differ-

ent. The parameter which governs the ratio between

thermal and molecular diffusivity (the Lewis number)

is generally on the order of 102 or more for liquids. Note

that for gases Le � 1 and for such low Lewis numbers,

the scale of heat and solute boundary layers are similar

and the buoyancy forces have a merely additive effect.

No multi-cellular structure is expected and the depen-

dence of the Nusselt number with permeability follows

the same variation as the Sherwood number, a smoothly

monotonous increase, as displayed in Fig. 9. Even if the

low and moderate values of the Lewis numbers used in

the simulations are not realistic, the comparison is in-

tended to show its influence on the heat and mass trans-

fer characteristics. All the parameters are fixed, except

for the mass diffusivity, meaning that the solutal Ray-

leigh number is increased in the same proportion as

the Lewis number. The Sherwood number is uniformly

increased with Le, and it can be verified that in the ‘‘fluid

limit’’ (Da = 1) the classical correlation [27] is verified.

Clearly the Nusselt number variation is similar at low

values of the Lewis number (Le 6 5), and the heat trans-

fer is decreasing as Le increases, as expected from the

scaling laws in the solutally dominated regime (N > 1)

[29]. The Nusselt curve shows only one minimum for

Le = 10. As can be seen in Fig. 10, the flow structure re-

mains monocellular but one can see a difference between

an outer recirculation cell, driven by the solutal effect

and a decreasing inner thermal cell (not shown) which

almost vanishes in the region of the minimum

(Da � 10�5), where the decrease in heat transfer is com-

pensated around Da = 3 · 10�5 by the penetration of the

porous layer. The mechanism is thus similar to the sec-

ond minimum of the reference case described above.

4.2. Influence of the buoyancy ratio

The last feature to be analyzed is the influence of the

buoyancy ratio. It is also well known that the double dif-

fusive feature of the flow is mostly visible in the interme-

diate regime between the heat transfer dominated

(N � 1) and the mass transfer dominated (N � 1) re-

gimes. In this range, both buoyancy forces are in compe-

tition, and their relative influence may be analyzed. In

this section numerical results are presented for positive
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values of N ranging from 1 to 10 for the same set of

parameters, including Le = 100 (Fig. 11). The results

may be compared to the reference case for decreasing

values of the solutal Rayleigh numbers, that is, when

decreasing the imposed composition difference between

the vertical walls.

Concerning the Sherwood number (Fig. 11a), it may

be observed that the value of N has very little influence

at low Da values: only the increase in mass transfer oc-

curs at smaller Da for higher N. Then, in the ‘‘fluid’’

range (Da > 10�3), the dependence of Sh on N is in

agreement with the scaling laws (see [27]).

If we consider the Nu curves (Fig. 11b), there is al-

most no difference between bCDC/bTDT = 1 or 2, for

which the Nusselt number variation is monotonous. A

minimum may be noticed at N = 3, but the limiting val-

ues (at Da < 10�7 or Da > 10�3) are also identical: here

only the solutal Rayleigh number is modified through

N and it is known to have little influence on the Nusselt

number. At N = 3, one could show that the flow struc-
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Fig. 11. Mass (a) and heat (b) transfer variation with perme-

ability for different buoyancy ratios (RaT = 106; Pr = 10;

Le = 100; A = 2; xP = 0.1).
ture remains monocellular, a stagnant zone is formed

at the bottom of the enclosure in the intermediate range

of permeabilities, which results in a decrease of the aver-

age heat transfer. In this particular situation this zone

remains stable, because the flow penetration of the por-

ous layer accelerates the fluid before the stratified zone

gets destabilized.

For N = 5, the flow structure exhibits three minima:

• the first minimum corresponds to the formation of a

second cell,

• in the neighborhood of Da = 10�5 a stagnant zone is

formed below the second cell but this zone does not

reach destabilization and the second cell increases

again,

• around Da = 10�4 the flow penetration progressively

increases the strength of the first cell and the second

cell finally disappears,

• at high permeabilities the flow is monocellular.

This complex behavior is seen to result from a subtle

shift between the minimum of the intensity of cell 1 and

the maximum of cell 2 (Fig. 12). The N = 5 case appears

as a transition between the globally monocellular flow

structure obtained at N 6 3 and the 3-cell structure at

N = 10. At low Da, the Nusselt number value at N = 5

is similar to the value obtained at smaller N (Fig. 11b),

while at high permeabilities the effect of solutally domi-

nated convection may be observed in the significant de-

crease in heat transfer, and the Nu value gets closer to

the value at N = 10.
5. Conclusion

The analysis of the numerical results presented in this

paper clearly shows the dependence of the average heat
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transfer on the double diffusive parameters. If it is con-

firmed that the presence of the porous layer has a strong

influence on the transfers, the modification of the flow

structure and the consequent modifications of the heat

transfer clearly result from a competition between the

flow penetration in the porous layer, depending essen-

tially on its permeability, and the effect of the parame-

ters related to the thermosolutal characteristics: high

Lewis number and dominating solutal buoyancy force.

These two ingredients are generally present in the solid-

ification process of binary alloys and the influence of this

mechanism on the solidification process should be ana-

lyzed in more detail.
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